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Abstract 
The introduction of computational grids has resulted in several new 

problems in the area of scheduling that can be addressed using predic- 
tions. The first problem is selecting where to run an application on the 
many resources available in a grid. Our approach to help address this 
problem is to provide predictions of when an application would start 
to execute if submitted to specific scheduled computer systems. The 
second problem is gaining simultaneous access to multiple computer 
systems so that distributed applications can be executed. We help ad- 
dress this problem by investigating how to support advance reservations 
in local scheduling systems. Our approaches to both of these problems 
are based on predictions for the execution time of applications on space- 
shared parallel computers. As a side effect of this work, we also discuss 
how predictions of application run times can be used to improve schedul- 
ing performance. 

Keywords: Run time prediction, wait time prediction, performance prediction, sched- 
uling, grid computing. 

1. Introduction 
The existence of computational grids allows users to execute their 

applications on a variety of different computer systems. An obvious 
problem that arises is how to select a computer system to run an ap- 
plication. Many factors go into making this decision: The computer 
systems that the user has access to, the user's remaining allocations on 
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these systems, the cost of using different systems, the location of data 
sets for the experiment, how long the application will execute on dif- 
ferent computers, when the application will start executing, and so on. 
We wish to help users make this decision, so in Section 1.3, we discuss 
approaches to predicting when a scheduling system for a space shared 
parallel computer will start executing an application. 

The large number of resources available in computational grids leads 
users to want to execute applications that are distributed across multiple 
resources; such as running a large simulation on 2 or more supercomput- 
ers. The difficulty with this is that different resources may have different 
scheduling systems without any mechanisms to guarantee that an appli- 
cation obtains simultaneous access to the different resources. To address 
this problem, Section 1.5 describes ways to incorporate advance reser- 
vations into scheduling systems and analyze their performance. Users 
can use advance reservations to ask for resources from multiple sched- 
ulers at the same time in the future and obtain simultaneous access. 
As a side effect of this work, in Section 1.4 we discuss how to improve 
the performance of scheduling systems even when no reservations are 
needed. 

W-e base much of the work above on techniques to predict the ex- 
ecution time of applications on space shared parallel computers. We 
begin this chapter by describing two techniques to calculate predictions 
of application run times and discuss their performance. 

2. Run Time Predictions 
There have been many efforts to predict the execution time of serial 

and parallel applications. We can roughly classify prediction techniques 
by whether the resources that are used are shared or dedicated, the type 
and detail of application and resource models that are used, and the 
type of prediction technique used. 

There have been many efforts to predict the execution time of appli- 
cations on shared computer systems [4, 5, 25, 191 and dedicated com- 
puter systems [21, 22, 6, 12, 14, 151. Almost all of the techniques refer- 
enced above use very simple models of an application. Typically either 
the information provided to the scheduler or this information plus a 
few application-specific parameters [15]. An exception is the work by 
Schopf [19, 181 where high-level structural models of applications were 
created with the assistance of the creators of the applications. 

The type of prediction technique that is used can generally be sepa- 
rated into statistical, which uses statistical analysis of applications that 
have completed, and analytical, which constructs equations describing 
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application execution time. Statistical approaches use time series anal- 
ysis [25, 51, categorization [21, 6, 121, and instance-based learning or 
locally weighted learning [15, 14, 221. Analytical approaches develop 
models by hand [19] or use automatic code analysis or instrumenta- 
tion [23]. 

We present and analyze the performance of two techniques that we 
have developed. Both techniques are statistical and only use the in- 
formation provided when an application is submitted to a scheduler to 
make predictions. The first technique uses categories to form predictions 
and the second technique uses instance-based learning. 

2.1 Categorization Prediction Technique 
Our first approach to predicting application run times is to derive run 

time predictions from historical information of previous similar runs. 
This approach is based on the observation [21, 6, 9, 121 that similar 
applications are more likely to have similar run times than applications 
that have nothing in common. 

One difficulty in developing prediction techniques based on similarity 
is that two applications can be compared in many ways. For example, 
we can compare applications on the basis of application name, submit- 
ting user name, executable arguments, submission time, and number of 
nodes requested. When predicting application run times in this work, 
we restrict ourselves to those values recorded in traces obtained from 
various supercomputer centers. The workload traces that we consider 
originate from 3 months of data from an IBM SP at Argonne National 
Laboratory (ANL), 11 months of data from an IBM SP at the Cornell 
Theory Center (CTC), and 2 years of data from an Intel Paragon at the 
San Diego Supercomputer Center (SDSC). The characteristics of jobs in 
each workload vary but consist of a relatively small set of characteristics 
such as user name application name, queue name, run time, and so on. 

Our general approach to defining similarity is to use job characteristics 
to define templates that identify a set of categories to which applications 
can be assigned. For example, the template (queue,user) specifies that 
applications are to be partitioned by queue and user. On the SDSC 
Paragon, this template generates categories such as (q16m, wsmith), 
(q641, wsmith), and (q16m, foster). 

We find that categorizing discrete characteristics (such as user name) 
in the manner just described works reasonably well. On the other hand, 
the number of nodes is an essentially continuous parameter, and so we 
prefer to introduce an additional parameter into our templates, namely, 
a node range size that defines what ranges of requested number of nodes 
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are used to decide whether applications are similar. For example, the 
template (u, n=4) specifies a node range size of 4 and generates cate- 
gories (wsmith, 1-4 nodes) and (wsmith, 5-8 nodes). 

In addition to the characteristics of jobs contained in the workloads, 
a maximum history,  type of data to store, and prediction type are also 
defined for each run time prediction template. The maximum history 
indicates the maximum number of data points to store in each category 
generated from a template. The type of data is either an actual run 
time or a relative run time. A relative run time incorporates information 
about user-supplied run time estimates by storing the ratio of the actual 
run time to the user-supplied estimate (the amount of time the nodes 
are requested for). The prediction type determines how a run time 
prediction is made from the data in each category generated from a 
template. We considered four prediction types in our previous work: 
a mean, a linear regression, an inverse regression, and a logarithmic 
regression [7]. We found that the mean is the single best predictor [20], 
so this work uses only means to form predictions. We also take into 
account running time, how long an application has been running when 
a prediction is made, when making predictions by ignoring data points 
from a category that have a run time less than this running time. 

Once a set of templates has been defined (using a search process de- 
scribed later), we simulate a workload of application predictions and 
insertions. For each insertion, an application is added to the categories 
that contain similar applications. For each prediction, an execution time 
and a confidence interval is calculated. A prediction is formed from each 
similar category of applications and the prediction with the smallest 
confidence interval is selected to be the prediction for the application. 

We use a genetic algorithm search to identify good templates for a 
particular workload. While the number of characteristics included in 
our searches is relatively small, the fact that effective template sets may 
contain many templates means that an exhaustive search is impracti- 
cal. Genetic algorithms are a probabilistic technique for exploring large 
search spaces, in which the concept of cross-over from biology is used to 
improve efficiency relative to purely random search [13]. A genetic al- 
gorithm evolves individuals over a series of generations. Our individuals 
represent template sets. Each template set consists of between 1 and 10 
templates, and we encode the previously described information in each 
template. The process for each generation consists of evaluating the fit- 
ness of each individual in the population, selecting which individuals will 
be mated to produce the next generation, mating the individuals, and 
mutating the resulting individuals to produce the next generation. The 
process then repeats until a stopping condition is met. The stopping 
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Workload 

ANL 
CTC 

SDSC95 

Mean Error (minutes) Mean Run 
Ours Gibbons Downey Time (minutes) 
34.52 75.26 97.01 97.08 
98.28 124.06 179.46 182.49 
43.20 74.05 82.44 108.16 

I I I I I SDSC96 I 47.47 I 122.55 I 102.04 I 166.85 

condition we use is that a fixed number of generations are processed. 
Further details of our searches are available in [20] 

The accuracy of the prediction parameters found by our searches are 
shown in the second column of Table 1.1. The prediction error is 39 per- 
cent on average and ranges from 28 percent for the SDSC96 workload to 
54 percent for the CTC workload. We compare these results to the run 
time prediction performance technique proposed by Gibbons [12] and 
the run time prediction technique used by Downey [6] to predict how 
long jobs will wait at the head of a scheduling queue before beginning 
to execute. Both of these techniques categorize applications that have 
completed executing, find categories that are similar to an application 
whose run time is to be predicted, and then form a prediction from these 
categories. The categories and techniques used to calculate predictions 
differ between the two techniques and differ from our technique. Ta- 
ble 1.1 shows that our predictions have between 21 and 61 percent lower 
mean error than the Gibbons’ approach and 45 to 64 percent lower mean 
error than the better of Downey’s two techniques. 

2.2 Instance-Based Learning Approach 
In our second approach) we predict the execution time of applications 

using instance-based learning (IBL) techniques that are also called lo- 
cally weighted learning techniques [I, 171. In this type of technique) a 
database of experiences, called an experience base, is maintained and 
used to make predictions. Each experience consists of input and output 
features. Input features describe the conditions under which an expe- 
rience was observed and the output features describe what happened 
under those conditions. Each feature consists of a name and a value 
where the value is of a simple type such as integer) floating-point num- 
ber, or string. In this work, the input features are the same ones as used 
in our first approach: The user who submitted the job, the application 
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that was executed, the number of CPUs requested, and so on. The 
execution time of the job is the only output feature of the experience. 

When a prediction is to be performed, a query point consisting of 
input features is presented to the experience base. The data points in 
the experience base are examined to determine how relevant they are 
to the query where relevance is determined using the distance between 
an experience and the query. There are a variety of distance functions 
that can be used I241 and we choose to use the Heterogeneous Euclidean 
Overlap Metric [24]. This distance function can be used on features that 
are linear (numbers) or nominal (strings). We require support for nomi- 
nal values because important features such as the names of executables, 
users, and queues are nominal. As a further refinement, we perform fea- 
ture scaling to stretch the experience space and increase the importance 
that certain features are similar. 

Once we know the distance between experiences and a query point, 
the next question to be addressed is how we calculate estimates for the 
output features of the query point. For linear output features, such as 
execution time, our approach is to use a distance-weighted average of the 
output features of the experiences to form an estimate. We choose to 
use a Gaussian function to form this distance-weighted average. Further, 
we include a factor, called the kernel width, so that we can compact or 
stretch the Gaussian function to give lower or higher weights to experi- 
ences that are farther away. 

To perform an estimate, we must select values for the parameters 
discussed above along with the maximum experience base size and the 
number of nearest neighbors (experiences) to use. Our approach to de- 
termine the best values for these parameters is to once again perform a 
genetic algorithm search [13] to select values that minimize the predic- 
tion error. 

Table 1.2 shows a comparison of our categorization technique and our 
instance-based learning technique using the same trace data that we used 
to evaluate our first technique. The table shows that at the current time, 
our instance-based learning technique has an error which is 44 percent of 
mean run times and 59 percent lower than the user estimates available 
in the ANL and CTC workloads. The user estimates for the ANL and 
CTC workloads are provided along with each job. Our IBL technique 
has an 89 percent lower error than the run time estimates that can be 
derived from the SDSC workloads. This system has many queues with 
different resource usage limits. We derive the run time limits for each 
queue by examining the workloads and finding the longest running job 
submitted to each queue. 
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Categorization Mean Error of Mean Run 
Mean Error User Estimate Time 

Tab1 

Workload 
ANL 
CTC 

SDSC95 
SDSC96 

(minutes) (minutes) (minutes) (minutes) 
36.93 34.52 104.35 97.08 
103.75 98.28 222.71 182.49 
51.61 43.20 466.49 108.16 
52.79 47.47 494.25 166.85 

Table 1.2 also shows that the error of our categorization technique 
is currently 10 percent lower than our IBL technique. There are sev- 
eral possible reasons for this result. First, we performed more extensive 
searches to find the best parameters used in the categorization technique. 
Second, the categorization technique essentially uses multiple distance 
functions and selects the best results obtained after using each of these 
functions instead of the single distance function used by our IBL ap- 
proach. In future work, we will evaluate how well our IBL approach 
performs when using multiple distance functions. 

3. Queue Wait Time Predictions 
On many high-performance computers, a request to execute an-appli- 

cation is not serviced immediately but is placed in a queue and serviced 
only when the necessary resources are released by running applications. 
On such systems, predictions of how long queued requests will wait be- 
fore being serviced are useful for a variety of tasks. For example, pre- 
dictions of queue wait times can guide a user in selecting an appropriate 
queue or, in a computational grid, to an appropriate computer [ll]. 
Wait time predictions are also useful in a grid computing environment 
when trying to submit multiple requests so that the requests all receive 
resources simultaneously [2]. A third use of wait time predictions is to 
plan other activities in conventional supercomputing environments. 

We examine two different techniques for predicting how long appli- 
cations wait until they receive resources in this environment. Our first 
technique for predicting wait times in scheduling systems is to predict 
the execution time for each application in the system (using the cat- 
egorization technique presented in Section 1.2) and then to use those 
predicted execution times to drive a simulation of the scheduling algo- 
rithm. This allows us to determine the start time of every job in the 
scheduling system. The advantage of this technique is that, for certain 
scheduling algorithms and accurate run time predictions, it can poten- 
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tially provide very accurate wait time predictions. A disadvantage is that 
if the scheduling algorithm is such that the start times of applications in 
the queues depend on applications that have not yet been submitted to 
the queues, the wait time predictions will not be very accurate. A second 
disadvantage of this technique is that it requires detailed knowledge of 
the scheduling algorithm used by the scheduling system. 

Our second wait time prediction technique predicts the wait time of an 
application by using the wait times of applications in the past that were 
in a similar scheduler state. For example, if an application is in a queue 
with four applications ahead of it and three behind it, how long did 
applications in this same state wait in the past? This approach uses the 
same mechanisms as our approach to predicting application execution 
times with different characteristics used to describe the conditions we 
are predicting. 

3.1 Scheduling Algorithms 
We use three basic scheduling algorithms in this work: first-come first- 

served (FCFS), least work first (LWF), and conservative backfill [3, 101 
with FCFS queue ordering. In the FCFS algorithm, applications are 
given resources in the order in which they arrive. The application at the 
head of the queue runs whenever enough nodes become free. The LWF 
algorithm also tries to execute applications in order, but the applications 
are ordered in increasing order using estimates of the amount of work 
(number of nodes multiplied by estimated wall clock execution time) the 
application will perform. 

The conservative backfill algorithm is a variant of the FCFS algorithm. 
The difference is that the backfill algorithm allows an application to 
run before it would in FCFS order if it will not delay the execution 
of applications ahead of it in the queue (those that arrived before it). 
When the backfill algorithm tries to schedule applications, it examines 
every application in the queue, in order of arrival time. If an application 
can run (there are enough free nodes and running the application will 
not delay the starting times of applications ahead of it in the queue), 
it is started. If an application cannot run, nodes are reserved for it 
at the earliest possible time. This reservation is only a placeholder to 
make sure that applications behind it in the queue do not delay it; the 
application may actually start before this time. 

3.2 
Our first wait time prediction technique simulates the actions per- 

formed by a scheduling system using predictions of the execution times 

Predicting Queue Wait Times: Technique 1 
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Wait Time Prediction Error 
Scheduling Actual Run Maximum Run 

Workload Algorithm Times (minutes) Times (minutes) 

Table 1.9. Wait time prediction performance using actual and maximum run times. 

Mean Wait 
Time 

(minutes) 

SDSC96 I LWF 1 1  3.32 

of the running and waiting applications. We simulate the FCFS, LWF, 
and backfill scheduling algorithms and predict the wait time of each 
application when it is submitted to the scheduler. 

Table 1.3 shows the wait time prediction performance when actual or 
maximum run times are used during prediction. The actual run times 
are the exact running times of the applications, which are not known 
ahead of time in practice. The maximum run time is the amount of 
time a job requests the nodes for and is when an application should 
be terminated if it hasn’t already completed. This data provides upper 
and lower bounds on wait time prediction accuracy and can be used to 
evaluate our prediction approach. When using actual run times, there 
is no error for the FCFS algorithm because later arriving jobs do not 
affect the start times of the jobs that are currently in the queue. For 
the LWF and backfill scheduling algorithms, wait time prediction error 
does occur because jobs that have not been enqueued can affect when 
the jobs currently in the queue can run. This effect is larger for the LWF 
results where later-arriving jobs that wish to perform smaller amounts of 
work move to the head of the queue. When predicting wait times using 
actual run times, the wait time prediction error for the LWF algorithm 
is between is between 34 and 43 percent. There is a very high built-in 
error when predicting queue wait times of the LWF algorithm with this 
technique because there is a higher probability that applications that 
have not yet been submitted will affect when already submitted appli- 

14.19 7.88 
SDSC96 I Backfill 1 1  0.30 39.66 11.33 
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Scheduling 

Table 1.4. Wait time prediction performance of our two techniques. 

Technique 1 Technique 2 
Run Time Wait Time 

Prediction Error Prediction Error 
Workload 

ANL 
ANL 
ANL 
CTC 
CTC 

- 
Algorithm (minutes) (minutes) (minutes) 

FCFS 38.26 161.49 260.36 
LWF 54.11 44.75 76.78 

Backfill 46.16 75.55 130.35 
FCFS 125.69 30.84 76.18 
LWF 145.28 5.74 9.80 

cations will start. There is also a small error (3 - 4%) when predicting 
the wait times for the backfill algorithm. 

The table also shows that the wait time prediction error of the LWF 
algorithm when using actual run times as run time predictors is 59 to 80 
percent better than the wait time prediction error when using maximum 
run times as the run time predictor. For the backfill algorithm, using 
maximum run times results in between 96 and 99 percent worse perfor- 
mance than us ing  actual r u n  times. Maximum run times are provided 
in the ANL and CTC workload and are implied in the SDSC workloads 
because each of the queues in the two SDSC workloads have maximum 
limits on resource usage. 

The third column of Table 1.4 shows that our run time prediction 
technique results in run time prediction errors that are from 33 to 86 
percent of mean application run times and the fourth column shows that 
the wait time prediction errors that are from 30 to 59 percent of mean 
wait times. The results also show that using our run time predictor 
result in mean wait time prediction errors that are 58 percent worse 
than when using actual run times for the backfill and L W  algorithms 
but 74 percent better than when using maximum run times. 
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3.3 
Our second wait time prediction technique uses historical informa- 

tion on scheduler state to predict how long applications will wait until 
they receive resources. This is an instance of the same categorization 
prediction approach that we use to predict application run times in Sec- 
tion 1.2. We selected scheduler state characteristics that describe the 
parallel computer being scheduled, the application whose wait time is 
being predicted, the time the prediction is being made, the applications 
that are waiting in the queue ahead of the application being predicted, 
and the applications that are running to use when making predictions. 
The characteristics of scheduler state are continuous parameters, similar 
to the number of nodes specified by an application. Therefore, a range 
size is used for all of these characteristics. 

The fifth column of Table 1.4 shows the performance of this wait time 
prediction technique. The data shows that the wait time prediction 
error is 42 percent worse on average than our first wait time prediction 
technique. One trend to notice is that the predictions for the FCFS 
scheduling algorithm are the most accurate for all of the workloads, the 
predictions for the backfill algorithm are all the second most accurate, 
and the predictions for the LWF algorithm are the least accurate. This 
is the same pattern when the first wait time prediction technique is used 
with actual run times. This indicates that our second technique is also 
affected by not knowing what applications will be submitted in the near 
future. 

Predicting Queue Wait Times: Technique 2 

’ 

4. Scheduling Using Run Time Predictions 
Many scheduling algorithms use predictions of application execution 

times when making scheduling decisions [3, 10, 81. Our goal in this 
section is to improve the performance of the LWF and backfill scheduling 
algorithms that use run time predictions to make scheduling decisions. 
We measure the performance of a scheduling algorithm using utilization, 
the average percent of the machine that is used by applications, and 
mean wait time, the average amount of time that applications wait before 
receiving resources. 

Table 1.5 shows the performance of the scheduling algorithms when 
the actual run times are used as run time predictors and when maxi- 
mum run times are used as run time predictors. These numbers give us 
upper and lower bounds on the scheduling performance we can expect. 
The data shows that while maximum run times are not very accurate 
predictors, this has very little effect on the utilization of the simulated 
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Actual Run Times 
Mean Wait 

Scheduling Utilization Time 

Table 1.5. Scheduling performance using actual and maximum run times. 

Maximum Run Times 

Utilization Time 
Mean Wait 

I Workload [ Algorithm 11 (percent) 1 (minutes) 11 (percent) 1 (minutes) I 

parallel computers. Predicting run times with actual run times when 
scheduling results in an average of 30 percent lower mean wait times. 

To evaluate how. well our run time predictions can improve schedul- 
ing performance, the first thing we need to determine is what template 
sets to use to predict application run times. We initially tried to mini- 
mize the run time prediction error for workloads generated by running 
the scheduling algorithms using maximum run times as predictors and 
recording all predictions that were made. We were not satisfied with 
the scheduling performance obtained using the parameters obtained by 
searching over these workloads. So, instead of attempting to minimize 
run time prediction error, we perform scheduling simulations using dif- 
ferent run time prediction parameters and attempt to directly minimize 
wait times. We do not attempt to maximize utilization because utiliza- 
tion only changes very slightly when different template sets are used or 
even when a different scheduling algorithm is used. 

Table 1.6 shows the performance of the results of these searches. As 
expected, our run time prediction has minimal impact on utilization. 
Using our run time predictions does decrease mean wait time by an 
average of 25 percent over using maximum wait times. These mean wait 
times are 5 percent more than the wait times achieved when using actual 
run times. 

5. Scheduling With Advance Reservations 
Some applications have very large resource requirements and would 

like to use resources from multiple parallel computers to execute. In this 
section, we describe one solution to this co-allocation problem: Advance 
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Mean Run Time Scheduling 
Prediction Utilization I Mean Wait Time 

I I Workload 1 Algorithm I( Error (minutes) ( 1  (percent) I (minutes) 

I 

SDSC96 [ LWF )I 112.13 I 46.79 I 7.43 
SDSC96 I Backfill 1 1  47.06 I 46.79 1 10.56 

reservation of resources. Reservations allow a user to request resources 
from multiple scheduling systems at a specific time and thus gain simul- 
taneous access to sufficient resources for their application. 

We investigate several different ways to add support for reservations 
into scheduling systems and evaluate their performance. We evaluate 
scheduling performance using utilization and mean wait time, as in the 
previous section, and also mean offset f r o m  requested reservation t ime; 
the average difference between when the users initially want to reserve 
resources for each application and when they actually obtain reserva- 
tions. The mean offset from requested reservation time measures how 
well the scheduler performs at satisfying reservation requests. 

In this section, we use these metrics to evaluate a variety of techniques 
for combining scheduling from queues with reservation. There are sev- 
eral assumptions and choices to be made when doing this. The first is 
whether applications are restartable. Most scheduling systems currently 
assume that applications are not restartable (a notable exception is the 
Condor system described in (161 and Chapter ??). We evaluate schedul- 
ing techniques when applications both can and cannot be restarted. We 
assume that when an application is terminated, intermediate results are 
not saved and applications must restart execution from the beginning. 
We also assume that a running application that was reserved cannot be 
terminated to start another application. Further, we assume that once 
the scheduler agrees to a reservation time, the application will start at 
that time. 

If we assume that applications are not restartable and the scheduler 
must fulfill it once it is made, then we must use maximum run times when 
predicting application execution times to ensure that nodes are available. 
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The resulting scheduling algorithms essentially perform backfilling. This 
approach is discussed in Section 1.5.2 

If applications are restartable, there are more options for the schedul- 
ing algorithm and this allows us to improve the scheduling performance. 
First, the scheduler can use run time predictions other than maximum 
run times. Second, there are many different ways to select which run- 
ning applications from the queue to terminate to start a reserved appli- 
cation. Details of these options and their performance are presented in 
Section 1.5.3 

Due to space limitations, we only summarize the performance data 
we collected for the techniques presented in this section. Please see [20] 
for a more comprehensive presentation of performance data. 

5.1 Reservation Model 
In our model, a reservation request consists of the number of nodes 

desired, the maximum amount of time the nodes will be used, the desired 
start time, and the application to run on those resources. We assume 
that the following procedure occurs when a user wishes to submit a 
reservation request: 

1 The user requests that an application run at time Tr on N nodes 
for at most M amount of time. 

2 The scheduler makes the reservation at time T, if it can. In this 
case, the reservation time, T ,  equals the requested reservation time, 
T r .  

3 If the scheduler cannot make the reservation at time T,, it replies 
with a list of times it could make the reservation and the user picks 
the available time T which is closest in time to T,. 

The last part of the model is what occurs when an application is 
terminated. First, only applications that came from a queue can be 
terminated. Second, when an application is terminated, it is placed 
back in the queue from which it came in its correct position. 

5.2 Nonrestartable Applications 
In this section, we assume that applications cannot be terminated 

and restarted at a later time and that once a scheduler agrees to a reser- 
vation, it must be fulfilled. A scheduler with these assumptions must 
not start an application from a queue unless it is sure that starting 
that application will not cause a reservation to be unfulfilled. Further, 
the scheduler must make sure that reserved applications do not exe- 
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cute longer than expected and prevent other reserved applications from 
starting. This means that only maximum run times can be used when 
making scheduling decisions. 

A scheduler decides when an application from a queue can be started 
using an approach similar to the backfill algorithm: The scheduler cre- 
ates a timeline of when it believes the nodes of the system will be used 
in the future. First, the scheduler adds the currently running applica- 
tions and the reserved applications to the timeline using their maximum 
run times. Then, the scheduler attempts to start applications from the 
queue using the timeline and the number of nodes and maximum run 
time requested by the application to make sure that there are no con- 
flicts for node use. If backfilling is not being performed, the timeline 
is still used when starting an application from the head of the queue 
to make sure that the application does not use any nodes that will be 
needed by reservations. 

To make a reservation, the scheduler first performs a scheduling sim- 
ulation of applications currently in the system and produces a timeline 
of when nodes will be used in the future. This timeline is then used to 
determine when a reservation for an application can be made. 

One parameter that is used when reserving resources is the relative 
priorities of queued and reserved applications. For example, if queued 
applications have higher priority, then an incoming reservation cannot 
delay any of the applications in the queues from starting. If reserved 
applications have higher priority, then an incoming reservation can de- 
lay any of the applications in the queue. The parameter we use is the 
percentage of queued applications can be delayed by a reservation re- 
quest and this percentage of applications in the queue is simulated when 
producing the timeline that defines when reservations can be made. 

5.2.1 Effect of Reservations on Scheduling. We begin by 
evaluating the impact on the mean wait times of queued applications 
when reservations are added to our workloads. We assume the best 
case for queued applications: When reservations arrive, they cannot be 
scheduled so that they delay any currently queued applications. 

We add reservations to our existing workloads by randomly converting 
either ten or twenty percent of the applications to be reservations with 
requested reservation times randomly selected between zero and two 
hours in the future. We find that adding reservations increases the wait 
times of queued applications in almost all cases. For all of the workloads, 
queue wait times increase an average of 13 percent when 10 percent of 
the applications are reservations and 62 percent when 20 percent of the 
applications are reservations. Our data also shows that if we perform 
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backfilling, the mean wait times increase by only 9 percent when 10 
percent of the applications are reservations and 37 percent when 20 
percent of the applications are reservations. This is a little over half of 
the increase in mean wait time when backfilling is not used. Further, 
there is a slightly larger increase in queue wait times for the LWF queue 
ordering than for the FCFS queue ordering. 

5.2.2 Offset from Requested Reservations. Next, we ex- 
amine the difference between the requested reservation times of the ap- 
plications in our workload and the times they receive their reservations. 
We again assume that reservations cannot be made at a time that would 
delay the startup of any applications in the queue at the time the reser- 
vation is made. 

The performance is what is expected in general: The offset is larger 
when there are more reservations. For 10 percent reservations, the mean 
difference from requested reservation time is 211 minutes. For 20 percent 
reservations, the mean difference is 278 minutes. 

Our data also shows that the difference between requested reservation 
times and actual reservation times is 49 percent larger when FCFS queue 
ordering is used. The reason for this may be that LWF queue ordering 
will execute the applications currently in the queue faster than FCFS. 
Therefore, reservations can be scheduled at earlier times. 

We also observe that if backfilling is used, the mean difference from 
requested reservation times increases by 32 percent over when backfilling 
is not used. This is at odds with the previous observation that LWF 
queue ordering results in smaller offsets from requested reservation times. 
Backfilling also executes the applications in the queue faster than when 
there is no backfilling. Therefore, you would expect a smaller offsets from 
requested reservation times. An explanation for this behavior could be 
that backfilling is packing applications from the queue tightly onto the 
nodes and is not leaving many gaps free to satisfy reservations before 
the majority of the applications in the queue have started. 

5.2.3 Effect of Application Priority. Next, we examine the 
effects on mean wait time and the mean difference between reservation 
time and requested reservation time when queued applications are not 
given priority over all reserved applications. We accomplish this by 
giving zero, fifty, or one hundred percent of queued applications priority 
over a reserved application when a reservation request is being made. 

As expected, if more queued applications can be delayed when a reser- 
vation request arrives, then the wait times are generally longer and the 
offsets are smaller. On average, for the ANL workload, decreasing the 
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percent of queued applications with priority from 100 to 50 percent in- 
creases mean wait time by 7 percent and decreases mean offset from 
requested reservation times by 39 percent. Decreasing the percent of 
queued application with priority from 100 to 0 percent increases mean 
wait time by 22 percent and decreases mean offset by 89 percent. These 
results for the change in the offset from requested reservation time are 
representative of the results from the other three workloads: as fewer 
queued applications have priority, the reservations are closer to their 
requested reservations. 

5.3 Restartable Applications 
If we assume that applications can be terminated and restarted, then 

we can improve scheduling performace by using run time predictions 
other than maximum run times when making scheduling decisions. We 
use our categorization run time prediction technique that we described 
in Section 1.2. 

The main choice to be made in this approach is how to select which 
running applications to terminate when CPUs are needed to satisfy a 
reservation. There are many possible ways to select which running ap- 
plications that came from a queue should be terminated to allow a reser- 
vation to be satisfied. We choose a rather simple technique where the 
scheduler orders running applications from queues in a list based on 
termination cost and moves down the list stopping applications until 
enough CPUs are available. Termination cost is calculated using how 
much work (number of CPUs multiplied by wall clock run time) the ap- 
plication has performed and how much work the application is predicted 
to still perform. Our data shows that while the appropriate weights 
for work performed and work to do vary from workload to workload, in 
general, the amount of work performed is the more important factor. 

We performed scheduling simulations with restartable applications 
using the ANL workload. When we compare this performance to the 
scheduling performance when applications are not restartable, we find 
that the mean wait time decreases by 7 percent and the mean difference 
from requested reservation time decreases by 55 percent. There is no 
significant effect on utilization. This shows that there is a performance 
benefit if we assume that applications are restartable, particularly in the 
mean difference from requested reservation time. 

6. Summary 
The availability of computational grids and the variety of resources 

available through computational grids introduce two problems that we 
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seek to address through predictions. The first problem is selecting where 
to run an application in a grid. The second problem is gaining simulta- 
neous access to multiple resources so that a distributed application can 
be executed. 

Our approaches to both of these problems are based on predictions of 
the execution time of applications. We propose and evaluate two tech- 
niques for predicting these execution times. Our first technique catego- 
rizes applications that have executed in the past and forms a prediction 
for an application using categories of similar applications. Our second 
technique uses historical information and an instance-based learning ap- 
proach. We find that our categorization approach is currently the most 
accurate and is more accurate than the estimates provided by users or 
the techniques presented by two other researchers. 

We address the problem of selecting where to run an application in a 
computational grid by proposing two approaches to predicting schedul- 
ing queue wait times. The first technique uses run time predictions and 
performs scheduling simulations. The second technique characterizes 
the state of a scheduler and the application whose wait time is being 
predicted and uses historical information of wait times in these similar 
states to produce a wait time prediction. We find that our first tech- 
nique has a lower prediction error of between 30 and 59 percent of the 
mean wait times. 

We address the problem of gaining simultaneous access to distributed 
resources by describing several ways to modify local scheduling systems 
to provide advance reservations. We find that if we cannot restart ap- 
plications, we are forced to use maximum run times as predictions when 
scheduling. If we can restart applications, then we can use our run time 
predictions when scheduling. We find that supporting advance reserva- 
tions does increase the mean wait times of applications in the scheduling 
queues but this increase is smaller if we are able to restart applications. 
As a side effect of this work, we find that even when there are no reser- 
vations, we can improve the performance of scheduling algorithms by 
using more accurate run time predictions. 
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